Realidade Aumentada na Engenharia Médica

Fotografia: Laurens Derks_Unsplash

A tecnologia de Realidade Aumentada (RA) tem conseguido avanços significativos em diversos setores, destacando-se notavelmente na área da saúde. Ao explorar o potencial da RA, abre-se espaço para interações inovadoras no mundo digital, redefinindo abordagens em tratamentos, deteção de doenças e manipulação de dados médicos.

O potencial da RA, por si só, é notável, mas a sua combinação com outros conceitos, como Inteligência Artificial, Realidade Virtual e Digital Twins, tem proporcionado inúmeros benefícios no setor da saúde. A simples utilização de óculos de realidade aumentada permite treinar novos médicos, aprimorar técnicas, identificar anomalias, realizar procedimentos cirúrgicos assistidos, obter informação em tempo real sobre pacientes, entre outras tarefas valiosas.

Este trabalho apresenta uma revisão das conquistas significativas alcançadas com o uso dessas tecnologias na engenharia médica. Além disso, são oferecidas perspetivas sobre projetos futuros e recomendações relevantes.

À medida que a pesquisa avança e as tecnologias se integram, antecipa-se uma evolução positiva nas operações em tempo real e na colaboração entre equipas, impulsionando a eficiência e a produtividade em diversos setores da indústria. Essa convergência promissora entre RA e outras tecnologias abre caminho para um futuro onde a inovação na saúde se traduzirá em benefícios tangíveis para profissionais e pacientes. (...)

Em colaboração com Ana Malta, RCM2+ - Research Centre in Asset Management and System Engineering; Politécnico de Coimbra - ISEC; CISE - Electromechatronic Systems Research Centre, University of Beira Interior; e Mateus Mendes, RCM2+ - Research Centre in Asset Management and System Engineering; Politécnico de Coimbra - ISEC

Referências

  1. Malta, Ana, Torres Farinha, and Mateus Mendes. "Augmented Reality in Maintenance—History and Perspectives." Journal of Imaging 9.7 (2023): 142.
  2. Rony Max. Disponível online: https://futuroexponencial.com/realidade-virtual-aumentada-mista/ (acedido em 31 de maio de 2022).
  3. Parque, MK; Lim, KJ; SEO, MK; Jung, SJ; Lee, KH.  Spatial augmented reality for product appearance design evaluation. J. Comput. Des. Eng. 2015, 1, 38–46.
  4. Rauschnabel, PA; Ro, YK. Augmented reality smart glasses: An investigation of technology acceptance drivers. Int. J. Technol. Mark. 2016, 11, 123–148.
  5. Tonn, C.; Petzold, F.; Bimber, O.; Grundhöfer, A.; Donath, D. Spatial augmented reality for architecture---Designing and planning with and within existing buildings. Int. J. Archit. Comput. 2008, 6, 41–58
  6. Mendes, M.; Almeida, J.; Mohammed, H.; Giot, R. Projected Augmented Reality Intelligent Model of a City Area with Path Optimization. Algorithms. 2019, 12, 140. https://doi.org/10.3390/a12070140.
  7. Rejeb, A.; Keogh, JG; Leong, GK; Treiblmaier, H. Potentials and challenges of augmented reality smart glasses in logistics and supply chain management: A systematic literature review. Int. J. Prod. Res. 2021, 59, 3747–3776.
  8. Diác, CN; Diác, GC; Popa, CL; Gineia, M.; Cotet, CE. Using augmented reality in smart manufacturing. Ann. DAAAM Proc. 2017, 28, 727–732.
  9. Henderson, SJ; Feiner, S. Evaluating the benefits of augmented reality for task localization in maintenance of an armored personnel carrier turret. In Proceedings of the 2009 8th IEEE International Symposium on Mixed and Augmented Reality, Orlando, FL, EUA, 19–22, October 2009; págs. 135–144.
  10. Scheffer, S.; Martinetti, A.; Damgrave, R.; Thiede, S.; van Dongen, L. How to make augmented reality a tool for railway maintenance operations: Operator 4.0 perspective. Appl. Sci. 2021, 11, 2656
  11. Tomás, PC; David, WM. An application of heads-up display technology to manual manufacturing processes. In Proceedings of the Hawaii International Conference on System Sciences, Kauai, HI, EUA, 7–10 de janeiro de 1992; Volume 26.
  12. Sielhorst, T., Feuerstein, M., & Navab, N. (2008). Advanced medical displays: A literature review of augmented reality. Journal of Display Technology, 4(4), 451-467.
  13. Tang, S. L., Kwoh, C. K., Teo, M. Y., Sing, N. W., & Ling, K. V. (1998). Augmented reality systems for medical applications. IEEE engineering in medicine and biology magazine, 17(3), 49-58.
  14. N. Navab, M. Mitschke, and A. Bani-Hashemi, “Merging visible and invisible: Two camera-augmented mobile C-arm (CAMC) applications,” in Proc. IEEE and ACM Int. Workshop on Augmented Reality, San Francisco, CA, 1999, pp. 134–141.
  15. Menezes, P., Chouzal, F., Urbano, D., & Restivo, T. (2017). Augmented reality in engineering. In Interactive Collaborative Learning: Proceedings of the 19th ICL Conference-Volume 2 (pp. 221-228). Springer International Publishing.
  16. Bin, S., Masood, S., & Jung, Y. (2020). Virtual and augmented reality in medicine. In Biomedical information technology (pp. 673-686). Academic Press. Rosenberg, LB. The Use of Virtual Fixtures as Perceptual Overlays to Enhance Operator Performance in Remote Environments; Stanford University CA Center for Design Research: Stanford, CA, USA, 1992.
  17. Tang, K. S., Cheng, D. L., Mi, E., & Greenberg, P. B. (2020). Augmented reality in medical education: a systematic review. Canadian medical education journal, 11(1), e81.
  18. Bosat, M., Önder, E., & Arcagök, U. (2020). Augmented reality practices in health services: Literature review. Bitlis Eren University Journal of Science and Technology, 10(2), 67-72.
  19. Vávra, P., Roman, J., Zonca, P., Ihnát, P., Nemec, M., Kumar, J., ... & El-Gendi, A. (2017). Recent development of augmented reality in surgery: a review. Journal of healthcare engineering, 2017.
  20. Jeon S, Hwangbo S, Hong J. A Surgical Navigation System to Assist in Chronic Total Occlusion Intervention. In : URAI 2016;
  21. Choi H, Park Y, Cho H, Hong J. An augmented reality based simple navigation system for pelvic tumor resection. In : Pro. of American Acadamy of Orthopaedic Surgeons; 2016.
  22. Lee S, Yoon H-S, Park J, Chung Y-S, Hong J, Yi B-J. A Surgical Navigation and Endoscope Holder Integrated System for Sinus Surgery. In : Proc. of The 11th Asian Conference on Computer Aided Surgery; 2015.
  23. Nikou, C., Digioia III, A. M., Blackwell, M., Jaramaz, B., & Kanade, T. (2000). Augmented reality imaging technology for orthopaedic surgery. Operative Techniques in Orthopaedics, 10(1), 82-86.
  24. Sielhorst, T., Obst, T., Burgkart, R., Riener, R., & Navab, N. (2004, September). An augmented reality delivery simulator for medical training. In International workshop on augmented environments for medical imaging-MICCAI Satellite Workshop (Vol. 141, pp. 11-20).
  25. Cofano, F., Di Perna, G., Bozzaro, M., Longo, A., Marengo, N., Zenga, F., ... & Calì, C. (2021). Augmented reality in medical practice: from spine surgery to remote assistance. Frontiers in Surgery, 8, 657901.
  26. Rupa, C., Srivastava, G., Ganji, B., Tatiparthi, S. P., Maddala, K., Koppu, S., & Chun-Wei Lin, J. (2022). Medicine drug name detection-based object recognition using augmented reality. Frontiers in Public Health, 10, 881701.
  27. Park, Y. J., Ro, H., Lee, N. K., & Han, T. D. (2019). Deep-care: Projection-based home care augmented reality system with deep learning for elderly. Applied Sciences, 9(18), 3897.
  28. Berciu, A. G., Dulf, E. H., & Stefan, I. A. (2022). Flexible Augmented Reality-Based Health Solution for Medication Weight Establishment. Processes, 10(2), 219.
  29. Kilgus, T., Heim, E., Haase, S., Prüfer, S., Müller, M., Seitel, A., ... & Maier-Hein, L. (2015). Mobile markerless augmented reality and its application in forensic medicine. International journal of computer assisted radiology and surgery, 10, 573-586.
  30. Malta, A.; Mendes, M.; Farinha, T. Augmented reality maintenance assistant using yolov5. Appl. Sci. 2021, 11, 4758.
  31. Chen, Z.-H.; Juang, J.-C. YOLOv4 Object Detection Model for Nondestructive Radiographic Testing in Aviation Maintenance Tasks. AIAA J. 2022, 60, 526–531.
  32. Tedeschi, A.; Benedetto, F. A real-time automatic pavement crack and pothole recognition system for mobile Android-based devices. Adv. Eng. Inform. 2017, 32,11–25.
  33. Li, S.; Zheng, P.; Zheng, L. An AR-assisted deep learning-based approach for automatic inspection of aviation connectors. IEEE Trans. Ind. Inform. 2020, 17, 1721–1731.
  34. Dhar, P., Rocks, T., Samarasinghe, R. M., Stephenson, G., & Smith, C. (2021). Augmented reality in medical education: students’ experiences and learning outcomes. Medical education online, 26(1), 1953953
  35. Tang, A.; Owen, C.; Biocca, F.; Mou, W.T. Comparative effectiveness of augmented reality in object assembly. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Ft. Lauderdale, FL, USA, 5–10 April 2003; pp. 73–80.
  36. Le, H.; Nguyen, M.; Yan, W.Q.; Nguyen, H. Augmented reality and machine learning incorporation using YOLOv3 and ARKit. Appl. Sci. 2021, 11, 6006.
  37. Gamberini, L.; Orso, V.; Beretta, A.; Jacucci, G.; Spagnolli, A.; Rimondi, R. Evaluating user experience of augmented reality yeglasses. Annu. Rev. Cybertherapy Telemed. 2015 2016, 2015, 28–32.
Artigo completo na TecnoHospital nº121, jan/fev 2024, dedicada ao tema 'Fronteira de impacto da Inteligência Artificial na Saúde'

José Torres Farinha

CEMMPRE (Centro de Engenharia Mecânica, Materiais e Processos, Universidade de Coimbra) e ISEC (Instituto Superior de Engenharia de Coimbra, Instituto Politécnico de Coimbra)

Se quiser colocar alguma questão, envie-me um email para info@tecnohospital.pt

Newsletter TecnoHospital

Receba quinzenalmente, de forma gratuita, todas as novidades e eventos sobre Engenharia e Gestão da Saúde.


Ao subscrever a newsletter noticiosa, está também a aceitar receber um máximo de 6 newsletters publicitárias por ano. Esta é a forma de financiarmos este serviço.